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FOREWORD

This report is a Technical summary presenting the results of a

study by the Satellite Communications Laboratory of the Electrical

Engineering Department, Auburn University, under the auspices of the

Engineering Experiment Station. The report is submitted in partial

fulfillment of the requirements in NASA contract number NAS8-248l8.
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ABSTRACT

DETERMINATION OF CONTOURS OF PICTURE

QUALITY FOR SATELLITE TELEVISION

BROADCASTING SYSTEMS

S. G. CHANDRASEKHARAIAH

Final Report .
Contract NAS8-24818

prepared by
Satellite Communications Laboratory

E. R. Graf, Project Leader
June 1972

The inevitable rise of domestic communication satellites has already

begun with the "mo1niya" system successfully operating in the U.S.S.R.

and another system "Anik" to be implemented in Canada. Also the present

review of U. S. domestic proposals by the FCC heralds a totally new con-

cept of communications. It has generally been agreed that the Television

Broadcast Satellite (TVBS) has the greatest potential for directly

helping the peoples of the world. Extremely careful planning is needed

in the design of these systems, because of the high initial cost

involved.

The space frequencies that are allocated for broadcasting are in

the 2.5 GHz and 12 GHz range. Though ionospheric effects are negligible

at these frequencies, tropospheric effects become important, especially

at 12 GHz. Further, these effects are highly weather dependent and
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statistical analysis is needed for an optimum system design. Hence by

using climatological data for one year and for different locations in

the U. S., the time and location probability data of the atmospheric

attenuation and sky noise temperature have been determined in the

present work. These are presented in the most general form so as to

be applicable to any satellite communication system design for the

temperate regions of the world.

Further a method has been derived to obtain picture quality con­

tours for a given system and coverage area of the earth. The method

is highly flexible and a number of alternative factors may be considered

for an optimum design of any system.

v



TABLE OF CONTENTS

LIST OF TABLES •

LIST OF FIGURES.

I. INTRODUCTION.

II. ATTENUATION DUE TO OXYGEN AND WATER VAPOR ••

III. ATTENUATION DUE TO CLOUDS AND FOG.

IV. ATTENUATION DUE TO RAIN •

V. SKY NOISE TEMPERATURE •

vii

viii

1

7

19

25

49

VI. STATISTICAL ANALYSIS ••

VII. PICTURE QUALITY • •

VIII. SYSTEM DESIGN

BIBLIOGRAPHY •

APPENDIX ••

. . . . . . . .
55

71

80

88

94

A. Computer Program for Statistical Analysis of Atmospheric
Effects on Satellite Transmission at 12 GHz • • • • • •• 94

vi



LIST OF TABLES

1. Choice of Line-breadth Constants in em-I. . • • • • • • • • 12

2. Constants used in Relationships of Attenuation Coefficient
f or Clouds. • • • • • • •• •••• • • • • • . • • • 20'

3. Principal Classes of Clouds in Temperate Regions. 58-59

4. Results of Statistical Analysis (Time Variation ) for 900

Elevation Angle • • • • • • • • • • . • •

5. Results of Statistical Analysis (Space Variation) for 90 0

Elevation Angle • • • • • . • • • • • • •

6. Time and Location Probability Data. •

7. Picture Quality Grades••••

vi:l,

61

62

63

79



LIST OF FIGURES

1. Synchronous Satellite Configuration. •

2. Absorption Coefficients for Oxygen and Water Vapor in the
Frequency Range 8-16 GHz • • • • • • • •

3. Model of Standard Atmosphere •

4

.13

. • 16

4. Total Zenith Attenuation due to Oxygen and Water Vapor
for Frequency Range 8-15 GHz • • • . . 18

5. Attenuation Coefficient for Clouds for Frequency Range
8-16 GHz and for Various Temperatures. • • • •• 21

6. Model of Atmosphere with Precipitation for Temperate
Regions. . . . . . . . . . . . . . . . . . 23

7. Decay Constant of Fog for Frequency Range 8-16 GHz and
at Various Temperatures and Visibility . . 24

8. Distribution of Raindrops with Size. • . • • 31

9. Theoretical Attenuation Versus Rate of Rainfall at
Several Wavelengths. • . • . • • • •• •••••••••••. 34

10. Relationship of Median Raindrop Diameter to Rainfall
Intensity. . . . . . . . . . . . . . . . . . . . . . . .. 36

11. Comparison of Theoretical and Measured Rain Attenuation at
3.2 cm Wavelength. (Measurements by Robertson and King.
[59]). . . . . . . . . . . . . . . . . . . . . . .. . ... 39

12. Coefficient Kp of Rain Attenuation Versus Frequency. • . 40

13. Exponent a of Rain Attenuation Versus Frequency. •• . .•. 41

14. Comparison of Theoretical and Measured Attenuation at
15 GHz for a 15.78 km Path Length. (Measurements by
Blevis, et al. [33]) •••.•.••.••.••••••••.. 42

15. Comparison of Theoretical and Measured Rain Attenuation
for 15.3 GHz Space Link. (Measurements from ATS-V [63]) •••• 44

viii



16. (a) Theoretical and Measured Rain Attenuation for 15.3 GHz
Space Link Versus Near Rainfall Rate. (Measurements from
ATS-V [64]) .. 0 0 0 • • • • • • • • • •• • •••••• 45

16. (b) Theoretical and Measured Rain Attenuation for 15.3 GHz
Space Link Versus Ground Averaged Rainfall Rate. (Measure-
ments from ATS-V [64]) • 0 • • • • • • . • •• . •.•••• 46

16. (c) Theoretical and Measured Rain Attenuation for 15.3 GHz
Space Link Versus Height Averaged Rainfall Rate. (Measure-
ments form ATS-V [64]) 0 0 • 0 • • • • • • • . • 47

170 Raingauge Network at Roseman, North Carolina . • 48

18. Water Vapor Density Versus Dew Point Temperature. (Data
from Berry, et alo [69]) . • • . • • . • • . • • • • •.• 57

19. Cumulative Distributions for Vertical Attenuation due to
Oxygen and Water Vapor at Different Locations. • • . •.• 64

200 Cumulative Distributions for Vertical Attenuations due to
Clouds at Different Locations. • • • • • • • . .. • ~ ••• 65

21. Cumulative Distributions for Vertical Attenuation due to
Rain at Different Locationso . • • . • • . • • • • • • • • 66

22. Cumulative Distributions for Total Vertical Attenuation
at Different Locations 0 • • • • • • • • • •• •• 67

23. Cumulative Distributions for Apparent Sky Temperature due to
Vertical Attenuation at Different Locations••.•••••••• 68

24. Cumulative Distributions for Total Attenuation at Various
Elevation Angles and New York Type Weather . • • • • • • • • . • 69

25. Cumulative Distributions for Apparent Sky Temperature at
Various Elevation Angles and New York Type Weather • • • • . . • 70

26. Contours of Equal Elevation Angle and the Corresponding
F(70,90) Values at 2.5 and 12 GHz. • • • • • • • . • 74

270 Use of Figure 26 for a Particular System Example. . 76

280 Antenna Gain Versus Angle Off Beam Center for Parabolic
Antenna with D/A = 27. • • • 0 • • • • • • • . • • • • • • • • . 81

ix



29. TVBS Picture Quality Contours for 12 GHz FM Transmission. • 83

30. TVBS Picture Quality Contours for 2.5 GHz FM Transmission. 85

x



I. INTRODUCTION

The Television Systems around the world have seen a very rapid

growth in the last few years. The effects of television have been

numerous. Most of the countries have adopted television not only for

entertainment and educational purposes but also as a means to achieve

national unity. The most important problem in any country, is that of

insuring a good ground coverage of the broadcasting signals so that the

percentage of homes which can receive television without complex aerials

or amplyfying equipment approaches 100%. At the present time, to

achieve close to 100% coverage with ground links requires a very large

number of conventional transmitting stations and the increase in dis-

tribution costs to achieve this coverage may be very much higher than

the increased revenue that would result.

The most attractive alternate to this is the possibility of using

space technology to provide television broadcast signals to the required

areas of earth. Of all the applications of today's space program, the

Television Broadcast Satellite (TVBS) probably has the greatest potential

for directly helping the peoples of the world. Many technical feasibility

studies of the Satellite Communication Systems [1 through 13] have been

made. The economical, educational and ot~er aspects of such systems
I

have also been widely discussed [14 through 17]. It has been generally
I

agreed that the TVBS, in its various forms, can provide mass communication
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and education where there are none; it can extend and improve them where

they exist; and it can accomplish these services more cheaply and quickly

than any other means.

The first domestic communication satellite in America, 'TELESAT'

is now being designed to augment the international Communications Systems

of Canada. This Synchronous Satellite is scheduled for launch by NASA

at the end of 1972. [18, 19, and 20].

The term 'Television by Satellite' is open to many interpretations,

of which the most extreme in technical difficulty is the case of the

Direct Television broadcaster, that is to say, a Satellite transmitting

directly into home receivers. Past and present television communication

by satellites has been limited to relaying to large, complex ground

receiving terminals. Satellites for this type of existing service

operate at very low levels of RF power output and low transmitting

antenna gain. The current technological state of the art is adequate

for the small, low-cost satellite of this type, a fact which has been

demonstrated. However, for direct broadcasting, high power broadcast

satellites are required for transmission to thousands of receiving

terminals, which must essentially be low cost receivers. Various

studies have resulted in the conclusion that if the current technology

and subsystem development is continued, high power spaceborne TV

transmitters and low cost receivers are feasible in the 1970-1985

period (21].
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A typical Synchronous Satellite System configuration is shown

in Figure 1. A ground transmitting station for each channel beams

its output to a geo-stationary satellite and the satellite responder

relays the signals directly to the home receiver (or to the community

antenna terminal). A geo-stationary satellite (altitude about 35,200 km

above the equator) would permit a continuous 24 hour broadcast service

to the area of coverage required.

A primary design objective for a TVBS system is to provide the

required quality signal by the most economical method - economical

in both dollar cost and frequency spectrum conservation. Among the

parameters that must be considered in designing a TVBS system are:

Television standards and signal formats

Subjective picture quality

Type of modulation

Sound channel requirements

Propagation factors

Man-made noise

Satellite subsystem technology limitations

Receiving terminal cost and complexity limitations.

In this study, propagation factors are discussed in detail and

their effect on the subjective picture quality has been investigated.

CCIR has allocated space frequencies of 2.50 - 2.69 GHz for Instructional

Services and 11.7 - 12.2 GHz for Broadcasting. Hence frequencies of
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Figure 1. Synchronous Satellite Configuration.
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2.5 GHz and 12 GHz are considered in this study. Only frequency

modulation need be considered because of lower transmitter power

requirements.

Subjective picture quality was the subject of extensive

investigations by the Television Allocation Study Organization (TASO)

during 1959-60. In their final report [22], the level of television

service has been characterized by specifying

(1) the signal carrier-to-noise ratio required for a given picture

quality to be achieved or exceeded, and

(2) the time and location probabilities of receiving at least

that level of picture quality.

These TASO numbers are derived in conjunction with an AM-VSB

receiver, and the same are modified in this report to determine FM

signal requirements.

For the frequencies considered, the atmospheric attenuation is the

most important propagation factor to be discussed. These losses are

mainly due to clear weather absorption, cloud and rain attenuation.

Henc~ they are weather dependent and the attenuation statistics are to

be obtained from existing meteorological data, using accepted theoretical

or experimental coefficients for converting the various meteorological

concentrations into radio attenuation values. This has been done

through the use of a suitably designed sampling procedure by involving

daily climatological data for one complete year.
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Snow, wet snow, hail, fog, etc. also cause attenuation of radio

waves. For snow and hail approximate computations may be made given

their shape, orientation and a description of their dielectric properties.

For others, such as fog, empirical measurements are required. The

effects of snow are generally ignored since the attenuation of snow is

small compared with that of rain. The same is true of dry sleet and

hail. Wet hail and melting snow may be modeled as very large raindrops.

However, since little data are available about their effects, they will

be ignored.

The performance of any communication system is a function of signal­

to-noise ratio, and hence it is important to know the sky noise con­

tribution. This, along with the noise level of the receiver, determines

the total noise level of the overall system. Fortunately, the atmospheric

noise may be assumed to be proportional to the atmospheric attenuation

and this simplifies the statistical analysis of the noise levels.

By means of such a statistical analysis, a method has been

developed to determine the picture quality contours for direct tele­

vision reception from synchronous satellites over a given coverage

area.



II. ATTENUATION DUE TO OXYGEN AND WATER VAPOR

Oxygen and water vapor are the two known contributors to the

absorption of electro-magnetic waves in atmospheric gases. Even though

electrically non-polar, oxygen gas absorbs microwaves because the

permanent magnetic dipole moment of the oxygen molecule interacts wi th

the electro-magnetic fields. Water vapor molecules have permanent

electric dipole moments. that cause microwave absorption. These

dipole moments, when excited by an elctro-magnetic wave, oscillate and

rotate with many degrees of freedom, each associated with a quantized

energy level hUe Thus the molecules absorb discrete amounts of energy

from the wave and are raised to a higher energy level; in returning to a

lower level they radiate energy isotropically, and therefore the net

result is an attenuation of the incident wave.

Oxygen has a band of resonance absorption lines in the region around

5mm. There is another at 2.5 mm. At atmospheric pressure the 5mm lines

broaden enough so that they nearly form a single line. Various estimates

have been made of a single broadening parameter which can best approxi­

mate the observed line shape. Besides this resonant absorption, there

is also a continuous non-resonant absorption, at long wavelengths

due to diagonal matrix elements.

Water vapor has a weak absorption line near 1. 35 cm, and a number

of stronger lines below 0.2 cm, the far tails of which contribute to the

7
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absorption in the centimeter wavelength region. The shapes of water

vapor resonance curves are dependent on atmospheric temperature, pressure

and partial pressure of water vapor, whereas the shapes of the oxygen

resonance curves are a function of atmospheric temperature and pressure.

A resonance line is generally described by an empirically determined

parameter denoted as the line-breadth. constant. The absorption due to

oxygen and water vapor were predicted theoretically by Van Vleck [23,

24] in 1942, and they account most closely for the observed absorption

data.

Three methods for measuring atmospheric attenuation may be cited:

(1) there is the laboratory technique, wherein the attenuation of energy

through a long cylinder, with a controlled amount of water vapor and

oxygen at a given pressure, is measured, (2) attenuation may be measured

by observing the extinction of an extra-terrestrial source as a function

of Zenith angle and (3) atmospheric emission is measured and the corre­

sponding attenuation calculated using an assumed atmospheric mean

temperature.

Van Vleck's formulas for absorption of oxygen and water vapor, as

given by Falcone [25] are as follows:
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oxygen absorption coefficient in dB/km

(~v)2

(1. _ 1.)2 + (~v) 22
AO A

(1)

where

(~v)l = line-breadth constant at sea level for the non-resonant

. -1part of absorption with dimensions 1n em t

(~v)2 = line-breadth constant for resonant part in cm-1 •

A = wavelength at which absorption is being calculated in em.

AO = resonant wavelength of oxygen (0.5 em)

and

= 0.385 x 0.21 P
T

where

P = pressure in millibars

T = temperature in OK.

(2)
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Water vapor absorption coefficient, in dB/Km, is given by

_ Z78
PHZOx 4. 77 x 104 x 10 T

Yw -
(tJ.V)Z

3

Where

+
(tJ.v) 3 [0. Z07PHZO+14. 4]PHZO (tJ.v) 3

TA
Z

(3)

A = resonant wavelength of water vapor (1. 35 em)o

(tJ.v)3 = 1.51 x 10-3 :Ifz[1 + 3.7~]
T P

e = water vapor pressure in millibars.

PH = water density in g/m3
ZO

(4)

Bean and Abbott [Z6] modified Van Vleck's formula for absorption

by oxygen due to the resonance line at 0.5 cm wavelength. as follows:

0.34
YO = -;:2



11

Whereas Bean and Dutton [27] describe the water vapor absorption due to

othe 1.35 cm line at a temperature of 293 K, by

0.0035PH20
y =----=

w ;\2 [

(fl_V_)""'-3 + (flv) 3

~t - 1.~5]2 + (flV)~ [~ + 1.~5]2 + (Av)~

(6)

.It may be seen from the above that the calculated values of absorption

depend on the choice of line-breadth constant (flv), which represents

the effect of broadening by collision. Various investigators have

determined the values for (flv) and they are listed in Table 1.

In the present work, the following values are used for line-

breadth constants.

(flv)3 = 0.11 em-I

and

(flv)4 = 4 x 0.11 em-I

-1
cm (7)

(8)

(9)

Based on these, the absorption coefficients for oxygen and water

vapor are computed for the frequency range 8 to 15 GHz and are plotted

as shown in Figure 2. Some of the available measured values are also

indicated in the figure.
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TABLE 1: CHOICE OF LINE-BREADTH CONSTANTS IN em-I.

Investigator Oxygen Water Vapor

(t.v) 1 (t.v) 2 (t.v) 3 (t.v) 4

Van Vleck
[23, 24] 0.02 0.02 0.1 0.1

Becker and
Autler [28] ---- ---- 0.087±0.01 0.O87±.01

Bean and
Dutton [27] 0.018 0.049 0.087 0.348

Dicke, et.al.
[29 ] (Calculated ---- ---- 0.11 0.11

(Measured) 0.12 0.12

Artman and 0.049 0.049 ---- ----
Gordon [30]

Straiton and
Tolbert [31] 0.02 0.02 0.1 0.1

Falcone [25] 0.025 0.025 ---- ----
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The National Bureau of Standards has derived an empirical function

for the total atmospheric attenuation due to oxygen and water vapor, based

on Blake's results [34].

This may be stated as follows:

(10)

Where

Ag = total atmospheric attenuation, in dB.

Al(f) = 1.4 + 0.09f - 1.6 exp (-2.lf) (11)

A2(r) = 1 - exp (-O.0054r) (12)

A3 (8) = exp (-108) (13)

~d

f = frequency in GHz

r = length of the raypath in km

8 = elevation angle in radians of the raypath above the horizontal

It may be seen from the above that the attenuation is not dependent

on water vapor content in the atmosphere, but only depends on frequency,
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path length and elevation angle. Since Blake's results are for fre-

quencies up to 10 GHz, the above empirical formula may be safely used

for frequencies up to 10 GHz.

The effects of oxygen and water vapor have been examined so far

for a homogeneous medium. These results can be applied to a horizontally

stratified atmosphere and used to estimate total atmospheric attenuation

as a function of meteorological conditions and location of the satellite

terminal. A modelof a standard atmosphere is shown in Figure 3. Only the

lower 20 km of the atmosphere are shown, since the contributions from

oxygen and water vapor above that altitude are negligible at the fre-

quencies of interest here. It may also be noted that the decay constants

of oxygen and water vapor decTease with altitude. For example, Bean [35]

reports that for a frequency of 10 GHz, both the oxygen and water vapor

value at the 7.6 km level is about 17% of that at the ground.

In order to account for the variation of attenuation in the tropos-

phere, an effective vertical path may be assumed. Castelli [36] assumes

a path of 11.1 km, whereas Benoit [37] uses a 10 km path. A path of 10 km

is assumed in this work to compute the total vertical attenuation.

Then the formula for vertical attenuation due to oxygen and water vapor

at 12 GHz may be derived as

-3
A = (0.085 + 5.28 x 10 PH )dB.

gv 20
(14)
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For any other elevation, the effective path length is given by

where

ro = radius ·of earth (6371 km)

e = elevation angle in degrees

r = vertical path (10 km)
v

and attenuation for this path is given by

r
A = A r- dB.

g ~ v

(15)

(16)

The total Zenith attenuation for the frequency range 8-15 GHz has

been computed, as shown in Figure 4. Also shown in this figure are the

values used by some other investigators. It may be noted from this

figure that the attenuation at 12 GHz used in this work represents a

good estimate.
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III. ATTENUATION DUE TO CLOUDS AND FOG

As in a gaseous absorption, microwave attenuation due to clouds and

fog varies with frequency. The attenuation is due to both absorption

and scattering. Cloud droplets are generally less than 100~m in diameter,

and since the diameter is much less than the wavelength (2.5 cm), Rayleigh

approximation holds, and the losses may be considered mainly due to

absorption rather than scattering. Temperature and dielectric constant

of the droplets also contribute. Attenuation increases as the temperature

of water in clouds decreases until the transition from water to ice is

passed, at which point a new dielectric constant takes effect and the

attenuation becomes considerably less. It has been shown that attenuation

depends more on total liquid water content than on droplet-size distri­

bution.

The attenuation by clouds of a signal transmitted towards the earth

can be evaluated on the basis of the data presented by Gunn and East [40],

through the simplified global formula

(17)

where ~ = Attenuation due to cloud in dB.

kc = Coefficient of attenuation for clouds in dB/km/g/m3

Pc = Water content of clouds in g/m3

R = Signal path through the cloud in km

Benoit [37J has expressed the coefficient k in terms of frequency,c

19
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type of clouds, (water or ice) and on temperature by the following

relationships.

k = fbw •
cw exp[aow (1 + mt)] (18)

and k f b.
ci = 1. exp[aoi (At 2 + Bt + 1)] (19)

where kcw = Coefficient for water cloud

kci = Coefficient for ice cloud

f = Frequency in GHZ

t = Temperature in 0 C.

and aow ' bw' aoi' bi , m, A and B are constants as listed in Table 2.

TABLE 2: CONSTANTS USED IN RELATIONSHIPS OF
ATTENUATION COEFFICIENT FOR CLOUDS.

Water Clouds Ice Clouds

aow = -6.866 aoi = -8.261

bw = 1.95 bi = 1.006

-4
A = -4.374 X 10

-3 -2
m = 4.5 X 10 B = -1.767 X 10

Using the above relationships, coefficient kc has been computed for

the frequency range 8 - 16 GHZ and is shown in Figure 5 for different

cloud conditions. The values of Gunn and East are indicated and the

curves computed by Bean [35] and Mitchell [41] are compared. The results
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show good agreement.

The water content of a cloud may range anywhere from a small fraction

to 3 or 4 g/m3 . A model of atmo~phere with precipitation for temperate

regions is shown in Figure 6. The horizontal extent of the cloud can be

several hund~ed km in any direction, although its vertical thickness

rarely exceeds 6 km. Hence the signal path length R may be taken as

(6 ) where S is the elevation angle in degrees.
SinS

Fog is caused by water droplets suspended in the air in sufficient

concentrations to reduce the visibility at the ground below 1000 meters.

The attenuation due to fog varies with frequency, temperature and visibility.

The decay constant of fog, as calculated by Ryde [42], is plotted in

Figure 7, along with the results of Erwin Mondre [43].

It may be seen that the attenuation at 20°C is about a factor of

one-half smaller than at O°C for a given visibility.

Signal loss in snow is the result of both scattering and absorption.

Atlas et al. [44] have shown that snow exhibits very small attenuation

at x-band frequencies.
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IV. ATTENUATION DUE TO RAIN

Precipitation in the form of rainfall is the largest factor in

atmospheric attenuation in the temperate regions of the world. The

sizes of water drops and the distribution of these sizes along the

propagation path are the controlling factors. Since the absorption

and scattering coefficients of water drops is well established, the

attenuation due to a homogenous rain of a given rate can be computed.

The attenuation increases rapidly with drop size, which increases

with rainfall rate and frequency.

The theory of scattering by a single lossy dielectric sphere is

based upon a series solution to the scattering problem and was first

given by Mie [45] in 1908. Stratton [46] has derived the same by

considering the interaction of a plane wave-front with a single

spherical drop. The analysis by Ryde [47, 48, 49] results in the

following for a hypothetical rain consisting of drops of equal diameter

and uniform drop concentration.

Attenuation = A = 0.4343NA2 A. x 106 dB/km
27T 1

where

N Number of drops per cubic centimeter.

A Wavelength in em.
00

Ai = Real part of L(a + b )
n=l n n

25

(20)

(21)



a
n

26

r j (a) [maj (rna) r" - j (rna) [aj (a) J' ]
(2n + 1) l n n n n

j (rna) [ah (1) (a)]" - h (1) (a) [maj (rna) fn n n" n
(22)

Jv(x) = the Bessel function of the first kind of order v.

(24)

(25)

h(1)(x)
n

(26)

lTDa =-
A

D Drop diameter in cm.

A = Wavelength in cm.

(27)

m = m1 - im2 square root of the complex dielectric

constant of water.

(28)

The following assumptions are made in the above formula.

(1) Rain drops are spherical.

(2) Dielectric constant of water in the drops is uniform and known.
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(3) Single scattering theory is sufficient to evaluate scattering

from a volume of rain drops.

(4) The drops are randomly scattered, with uniform average density.

throughout the space of the ray path.

(5) The assumption of a plane wave-front at each drop position is'

adequate. and

(6) the interaction between drops is negligible.

Using these assumptions. the attenuation coefficient is determined

from the imaginary part of the effective index of refraction of the

medium and is proportional to the sum of the total scattering and

absorption cross section per unit volume averaged over the drop size

distributions applicable to the unit volume. The attenuation

coefficient thus obtained describes the behavior of the expected value

of the amplitude of the wave propagating through the medium or the

so called 'coherent' signal propagating through the medium.

The fundamental physical quantity in the above expression is m.

Medhurst [50] uses the semi-empirical expressions given by Saxton [51J.

They are

+
2

E + E X
S 0

J 1/2

(29)
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(30)

where x = WT O = 2rr X 3 X 1010

A
(31)

ES and TO are temperature dependent and at 20°C, the values

as given by Saxton are

E S = 80.08

8.1 X 10-12

. and Eo = 5.5

Using these values, the value of m at 12 GHz becomes,

m = (8.007 - i2.07l6)

(32)

(33)

(34)

(35)

Further one may define the cross section Qt of the water dr9P as

the ratio of the total absorbed and scattered energy per second to the

energy density of the incident wave and is given by

(36)

Then the attenuation for a given drop spectrum is

(37)
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In order to relate the attenuation to the precipitation rate

pmm/hr, it is necessary to know the raindrop spectra, i.e. the number

of drops having a given diameter (per cubic meter) for a given rate

of rainfall. Practically, this distribution will vary accoring to wind,

temperature and other conditions. Representative distributions have

been obtained by Laws and Parsons [52], Marshall and Palmer [S3],. Kelkar

[S4], and others. The raindrops are classified in about IS ranges

of dimension. For each range of diameter Dl , D2"", DIS it is

possible to calculate the attenuation cross section Qt(Dl ), Qt(DZ) '"

Qt(DlS ) and knowing the number of drops n(Dl ) , n(DZ)"'n(DlS)'

attenuation can be expressed by

A 0.4343In(Dl )Qt(Dl ) + n(DZ)Qt(DZ) + •.. + n(DlS)Qt(D
lS

)] x 106

(38)

The drop distribution may be obtained by one of the following

two methods.

The first method is due to Laws and Parsons. They give represen-

tative drop size distributions in percent of total volume for a given

precipitation. The terminal velocity of rain drops (v m/s) as a

function of drop diameter is given in Figure 1 of Medhurst. Now suppose

that for a particular precipitation rate, say pmm/hr, PD. is the
1.

proportion of total volume of water reaching the ground which consists

of drops whose diameters fall in the interval centered on Di em. Then

it can be shown that
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PD.
1

1.885 x 106 x v x D3 (39)

where n(Di ) = number of drops of diameter Dicm.

The second method is due to Marshall and Palmer. They fit the

experimental observations by an exponential distribution function,

N(D) = ND exp[-AD]

( . + dD)
D1 2

and n(Di ) = JN(D) dO= number of drops of diameter bet~een
(D

i
_ dD)

2

(Di - dD) and (D. + dD) in unit volume of space (40)
2 1 2

No = value of ND for D 0, which is = 0.08 cm-4 and

A 41 p-O.2l -1cm (41)

This distribution function as compared with the results of Laws

and Parsons, and Marshall and Palmer, is shown in Figure 8.

Based on the above, the first comprehensive tabulation of the

attenuation coefficient versus rain rate for a large number of frequencies

was made by Ryde and Ryde [44,~5]. Medhurst [46] corrected and extended

this earlier work and compared the updated attenuation curves with

the experimental data then available in the literature. He observed



31

EmPirical} MARSHALL AND
___ Measured PALMER [53 ]

[ 5 ~ ]_._. - LAWS AND PARSONS

IE
10

2
E

I
C')

IE
E

c

Cl
Z

10
1

2S mm/hr

10° l------:-I~---__=:_L~~--_=.L::__----.;..~---~:::i_=
0.1 0.2 0.3 0.4 0.5

0, in em

Figure 8. Distribution of Raindrops with Size.



32

"a marked tendency for the observed attenuations to fall well above the

levels which according to the theory, cannot be exceeded." From this

he concluded that "the applicability of Mie theory to the practical

rainfall situation cannot be said to be demonstrated," and concludes

that the attenuation curves obtained by applying the Mie theory to the

Laws and Parsons drop size distribution can only be taken as giving a

rather crude order of magnitude. The exponential distribution model

of Marshall and Palmer consists of more small drops than given in the

Laws and Parsons distribution, but otherwise similar to it. Crane [55]

has estimated attenuation coefficient versus frequency for both models.

It may be seen from his figure (7) that both models would result in

almost identical coefficients at least up to 35 GHz. This means that

the smaller rain drops have significant effect on attenuation only at

frequencies above 35 GHz.

Since the publication of Medhurst's paper, several additional

experiments have been performed and almost all of these reported the·

same tendencies as Medhurst noted. The discrepancy between the measured

and predicted attenuation values may be attributed partly to the theory

and partly to experimental error, which is due to inadequate handli~g

of meteorological data.

In the theoretical approach, one possible error is the neglect

of multiple scattering effects along the path. Wulfsberg and Altshuler

[56] have shown that the effect of scattering on measurement accuracy

is considered negligible at 15 GHz and significant only at high rain
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rates at 35 GHz. (It may be noted that we are interested in frequencies

below 35 GHz in this discussion).

Another possible source of ,error is that the rain structure may

be more complex than has been assumed. It has been found that the

drop size distributions are not homogenous in space or time. The

drop size distribution measured at the surface bya small device may

be different from the average drop size distribution present in the

actual beam which is large compared to the capture surface of the drop

size measuring device.

It may be suspected that both the models of raindrop size spectra

used in the above discussions are not satisfactory. This becomes

clear if we look at the computations made by Godard [57] using

Kelkar's distribution. Comparisons at wavelengths of 10 cm, 5.5 cm

and 0.86 cm are made in Figure 9, showing computations of Medhurst

and Godard. Two observations may be made from this comparison.

(1) At wavelengths of 10 cm and 5.5 cm, the results of Godard

are significantly larger than those of Medhurst, for all rates of

rainfall. This means Godard's results are closer to the measured

values, than those of Medhurst. This may indicate that the Kelkar's

distribution may be more appropriate than either of the earlier two

models used.

(2) At 0.86 cm wavelength, there is no significant difference

between the two results. This may suggest that with smaller and

smaller wavelengths, the effects of variation in raindrop spectra

become less and less significant.
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The second observation gave clue to the possibility of using a

new model in the present work for the computation of rain attenuation

and the same is explained below.

In the new model, the concept of median diameter is utilized to

replace the rain drop spectra for a given rainfall. The median drop

diameter is the raindrop diameter dividing the drops of larger and

smaller diameter into groups of equal volume. Laws and Parsons have

derived the following relation between the median diameter and rate of

rainfall.

0.182
D50 = 2.23 R

where

D50 = median diameter in rom.

and

R = rain fall-rate in inches/hr.

Greer 15~] has modified the above relationship to the form

D50 = (2.54 + 0.97 log R)

(42)

(43)

These relations are shown in Figure 10. Since the results of Greer give

better results, they are used in the following computations.

In order to calculate the attenuation at a given frequency, for

a given rain fall the following steps are taken.

(1) For a given rainfall, the median diameter is computed from

equation (43).
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(2)

(3)
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For this diameter and given At Q is determined from (36).
t

It is assumed that the rain consists of only drops of

diameter 050 and the number of such drops is given bYt

NO = ------"p~---­
1.885 x 106 x v O~O

where p = rainfall rate in mm/hr

(44)

v = terminal velocity of raindrop of diameter 050 ,

The value of v is read from Figure 1 of reference [50l t and NO is

calculated.

(4) The attenuation is then given by,

A (45)

Computations of attenuation are made for wavelengths of 10 cm t

5.5 cm t 2 cm and 0.86 cm t and for rainfall rates up to 10 mm/hr and

the results are plotted in Figure 9. It may be seen that the results

of the new model fit almost exactly with the results of Godard. This

is true especially at longer wavelengths, where the drop size distribution

assumed has a significant effect. In all cases t however, the new model

results in higher values of attenuation as compared with those of

Medhurst and are therefore closer to the measured values as is

shown below. Even though the new model gives good results, no attempts

are made to explain the physical phenomena involved with the relation-

ship between median diameter and actual rain drop distribution as far

as the absorption of microwave energy is concerned.
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In the following figures, comparisons are made with some of the

measured values. Figure 11 indicates measurements of Robertson and

King f5~] at A = 3.2 cm compared with the analytical results of Medhurst and

present computation. Even though slightly better fit is obtained than

that of Medhurst, there is still wide dispersion. Of course, this

may be attributed to inadequate use of rainfall data, since only one

rain gauge was used and no averaging techniques were employed.

Several investigators use an empirical relationship given by Gunn

and East 140], of the form A Where k and a are frequency
p

dependent parameters. These parameters, as derived by various workers

are given in Figures 12 and 13. Figure 14 gives the measurements at

15 GHz, for a path length of 15.78 km by B1evis et a1. [55]. Also

shown is their empirical formula used, which compares with the theoretical

computations based on Laws and Parsons distribution. It may be seen

again, that the results of the present model give a better fit for

the measured values.

The most encouraging application of the new model seems to be for

the earth to Space Communication link. The results based on median

diameter used in conjunction with space averaged rainfall rate seem

to indicate a good correlation with the measured values as discussed

below. It may be that the median drop is a good representation for an

earth to space path, since there probably are differences between

water drop speeds and distributions near the ground surface and near

the cloud.
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Figure 15 is a scatter diagram carrier attenuation at 15.3 GHz

versus rainfall rate measured by ATS-V satellite experiment as given

by Ippolito [56]. The predicted empirical formula in this case also

is based on the earlier two models of raindrop spectra, and the new

model results in better agreement with the measured values. However,

more definite comments are not made in this case since the precipitation

statistics were taken only from two rain gauges placed about 50 meters

apart directly in front of the antenna system. The necessity of better

averaging techniques 'is evident from the later results of ATS-V as

given by Ippolito [64].

Figures 16 (a), (b) and (c) are taken from Ippolito [64].

The abscissa indicate "near rainfall rate" in (a), "ground averaged

rainfall rate" in (b) and "height averaged 'rainfall rate in (c). Ten

rain gauges were used for this measurement and were placed as shown

in Figure 17.

The "near rainfall rate" is the rate as given by the nearest

(46)
where ~(O) is the reading of

gauge located directly in front of the antenna. The "ground averaged

;1"0 Rn (0)
rainfall rate" is R(O) = 2

n=l 10

the nth bucket. The height average rainfall rate is,

R(h) = 1

10

10 h
\' n
L (1 - "H) Rn(O).

n=l
(47)

where hn and Hare as shown in Figure 17.
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H=3.22 km

Figure 17. Rain gauge network at Roseman, N. C.[64]

Ippolito found that the reduction in dispersion between the

measured values and predicted values based on earlier theoretical

results, is most pronounced for R(h). However, the best fit prediction

curve for R(h),he found to be a slant path length of 7.1 km, which

corresponds to a vertical height of 4.73 km for rain path. Even

though the vertical height of rain path varies over wide limits,

it has been found that a model with a 3 km height is the most suitable

one [65]. With this assumption, the ray path length is taken as 4.8 km

and the results based on the new model are given in Figures 16 (b) and

(c). It is clear from (c) that the 4.8 km path attenuation based on

the new model versus: height averaged rainfall rate gives the best

fit for the measured Values.



V. SKY NOISE TEMPERATURE

Sources of noise in an idealized high gain antenna oriented

skyward can be divided into two categories: those that exist outside

the earth's atmosphere and those within the atmosphere.

(i) Outside the atmosphere, the sun, various radio stars, inter­

stellar hydrogen, etc. radiate noise into the antenna. Also, very

intense radiation originates near the center of our own galaxy.

(ii) Within our atmosphere, atmospheric gases and precipitation

in addition to absorbing, also emit electromagnetic energy. Thus the

atmosphere 2ctS like an attenuator at some temperature T, and accordingly

the oxygen, water vapor and precipitation within an antenna beam

radiate noise into the antenna. The sum of these noise sources can

be described by an effective noise temperature, which we call simply

antenna temperature.

For a uniform medium in thermo-dynamic equilibrium, the theory of

black body radiation states that a good absorber is also a good emitter

(Kirchoff's Law). The atmosphere may be considered to approximate such

~ medium using Kirchoff's Law and the principle of conservation of

energy, one can derive the radiative transfer equation, which describes

the radiation field in the atmosphere that absorbs, emits and scatters

energy. This field can be measured with an antenna, and for a non­

scattering atmosphere the amount of radiation that is received when

the antenna is pointed at a source [66] is,

49



T
a

00

T~e-T + fT(S)Y(S)

o

50

00

exp[-f yes' )ds' ]ds
o

(48)

= Effective antenna temperature in oKT·a

T t. =
a

Effective antenna temperature with no intervening atmosphere in oK.

T = Total attenuation in nepers.

yes) = Absorption coefficient.

s = Distance from antenna. (ray path)

In the above, Ta is proportional to the power received by the

antenna. The first term on the right hand side represents direct energy

from the source that has been attenuated by~the atmosphere and the second

term is the contribution resulting from noise radiated by the atmosphere.

At mm wavelengths it can be assumed that discrete source (with the

exception of sun and moon) and galactic emission are negligible. Thus,

the first term becomes zero if the antenna is pointed away from the

sun or the moon.

Hence an antenna observing the emitting medium would detect a

received signal given by

P k J41T f 00

B = 41T G(Q). T(s)Y(s)
s

exp[- f· y(s')ds'] ds dr.
o

(49)

o 0

where P/B is the received power per unit frequency, P received power,

B receiver bandwidth and G(Q) the antenna gain function. Then we have,
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51

41T

Ta =!- = f J~ G(O)r(s)y(s)exp[- 1
kB Ji 41T 0

o 0

y (s' )ds 'Jdsdr (50)

41T

"f'G(O),. r(O)dO ~

..: 41T s

where the sky temperature

n T (0)
s (51)

Ts(O) =F(s)Y(s)exp[- ~ y(s')ds']ds.

and n = antenna efficiency.

Hence the antenna temperature or sky temperature for a given

(52)

antenna may be computed once the attenuation coefficient and the tem-

perature of the gas is known as a function of position.

A mean absorption temperature of the atmospheric path (Tm) may be

considered, which is independent of frequency, and is related to the

surface temperature Tg by,

Tm = (1.12 Tg -50) (where Tm is in oK and

T . in °C)g 1.S

(53)

Also a cosecant law for the attenuation and a total attenuation less

than 1 dB, may be assumed. With these approximations, the equation

for sky temperature becomes
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co

Ts = Ts(O)~Tm ~(S)expI- ~ y(s')ds']ds

o

1
Ts = T (1 - - )m aT

where aT = total atmospheric attenuation.

(54)

(55)

(56)

Crane I55] has computed sky temperatures using the approximate equa-

tion (56) and compared with the measurements of Wulfsberg [67]. It is

observed that the cosecant form of the approximation works well for

elevation angles above 10° for i5 and 17 GHz and above 15° for 35 GHz.

The calculation of Ts from the above is generally limited to clear

sky or thin cloud conditions since the assumptions in the derivation

are not valid for appreciable condensed water absorption or scattering

in the path. The ratio of the energy rescattered by the raindrop to

that absorbed is called the single albedo. For small values of albedo

most of the energy is absorbed and the incoherently scattered signal

reaching the receiver will be negligible. Crane has computed values

of single scattering albedo, using Laws and Parsons drop-size distributions,

and has found that at frequencies below 12 GHz, the single scattering

albedo is less than 0.2 for rains up to 6 in/hr. Hence it is concluded

that at frequencies 12 GHz and below, the non-scattering medium trans-

mission equation will be sufficient. Using this equation, Crane has

computed sky temperatures at 7.78 GHz and compared with the measured
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Wulfsberg and Altshuler [56] have determined rain attenuation at

15 and 35 GHz, from both extinction and emi.ssion measurements. The

attenuation from emission measurement was calculated using the approxi­

mate formula given by (56). They have concluded that for orographic rain

up to rates of 50 mm/hr in Hawaii, attenuations up to approximately.

10 dB can be calculated quite accurately from an emission measurement.

Calculated attenuations at 15 and 35 GHz using emission measurement

are found to be in fairly good agreement with those obtained using the

sun as a source with correlation coefficients of 0.98 and 0.97,

respectively.

Falcone [25] has found that by increasing the oxygen line-breadth

constant from 0.02 to 0.025, the calculated values of apparent sky

temperature from the radiative transfer equation are in good agreement

with the measured values at 15, 17 and 35 GHz. However, these results

are for fair weather conditions only.

Hogg [68] has computed the effective antenna temperatures due to

oxygen and water vapor in the atmosphere for the frequency range 0.5

to 40 GHz, using the International Standard Atmosphere model. It may

be extrapolated from his results, that effective temperature at 12 GHz
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increases from about 3° to l200K due to oxygen, and 1° to 1000K due

to water vapor as the Zenith angle is increased from 0° to 90°.

The effect of clouds on the apparent sky temperature depends on

their height, thickness, and water content. Cirrus clouds composed

of ice crystals, produce a negligible contribution to sky noise.

Wulfsberg [67] has found that the increase in Zenith temperatures due

to large fair-weather cumulus clouds to range from 5°K to 25°K at 35 GHz.

and only a few degrees at 15 GHz.

Ippolito [63] has shown the attenuation predicted from sky

temperature measurements at 16 GHz using the simplified formula, as

compared with the measured attenuation from ATS-V experiment for four

hours of rain storm. The correlations of these vary from hour to

hour, with the best prediction occurring during the heaviest recorded

ground rainfall. This result is termed as a surprise, however the same

results have been found from other measurements of ATS-V [64]. It

may be noted that Crane's results also support this kind of observation,

in that correlation between predicted and measured values appears

better at higher levels of attenuation.

Based on these results, it is concluded that sufficiently accurate

results will be obtained by computing the sky temperatures based on

the simplified formula (56).



VI~ STATISTICAL ANALYSIS

The atmospheric attenuation and the corresponding sky noise

temperature have been found to be highly weather-dependent. Hence

statistical data on the levels of these is required in order to specify

the long term performance of the TVBS System. The statistical meteo­

rological approach has the advantage that results are obtained with

much less expense and effort than would be required in an experimental

approach.

Five typical locations in the United States are selected for the

weather statistics. These are Washington, D. C., Albany (New York),

Montgomery (Alabama), Miami (Florida) and Sacramento (California). The

weather information at these places is obtained for 7 p.m. (EST) each

day during the year 1970, from Local Climatological Data, a U. S.

Department of Commerce publication. Such a sampling is expected to

reflect with sufficient accuracy the time and space variations for

all temperate regions.

For a given path, attenuation due to oxygen is assumed constant,

since daily or seasonal changes in pressure or temperature alter the

oxygen concentration negligibly. Further, at 2.5 GHZ, the attenuation

due to water vapor, clouds and rain is neglig~ble and hence the statis­

tical analysis is needed only for 12 GHZ.
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Water vapor density in the atmosphere is most directly related to

the dew point temperature. This relation given by Berry, et ale [69]

is shown in Figure 18.

The effect of clouds on attenuation depends on their height,

thickness and water content. Clouds come in a variety of sizes, shapes

and textures. When one studies the appearance of clouds, it becomes

apparent that there are distinct types. On this basis, one could

group them into three fundamental classes; stratus, cumulus and cirrus.

Some differentiating characteristics of these clouds as given by Mason

[70] are shown in Table 3. The water content are the averages of

those listed by Fletcher [71]. The type of cloud on each day is

identified by the ceiling height given in climatological data sheet.

The temperature of the cloud is approximately estimated from the

Pseudo-Adiabatic Diagram of the weather bureau.

The rain statistics are taken from the hourly average value given

in climatological data at 7 p.m. (EST). Bussey [72] has found, that

on the average, about 20% of the time during an hour was really time

of zero rate or of the very low rate known at 'trace,' about 35% of

the time the mean hourly rate was exceeded, and to exceed it by 5 or

6 times for a few minutes was a fairly common occurrence. He has also

derived that 1 hour p6inti rates give instantaneous 50 km path rates.

This assumption is used in the present work.

From the above statistics, computations have been made to deter­

mine time and space variations of attenuation and receiver noise
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temperature. The computer program for time variation analysis for

one sample is as shown in Appendix A. Five samples are taken for

time variation analysis and six samples are chosen for space variation

analysis. The corresponding values for an elevation angle of 90° are

shown in Table 4 and Table 5. The overall averages of all samples

are shown in Table 6, for 8 elevation angles. Cumulative distributions

for vertical attenuation due to oxygen and water vapor, clouds, pre­

cipitation, and for total attenuation at all five locations are shown

in Figures 19, 20, 21 and 22, respectively. The cumulative distribution

for the apparent sky temperature are shown in Figure 23.

The effects of different elevation angles for the ray path on the

total attenuation and the corresponding sky noise temperature are shown

in Figures 24 and 25, respectively. Though these are for New York type

weather, they may be taken as representative for all temperate regions.
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VII. PICTURE QUALITY

In any broadcast system, it is desirable that means exist for

estimating how large an area can be reached by its programs and to

know how quality of reception varies over this area. In the Final

Report of TASO [22], it has been recommended to the FCC that one has

essentially three basic qualities to specify in characterizing a level

of Television Service: (1) level of picture quality to be achieved

or exceeded; (2) the grade of receiver plant postulated for the ob­

servation of picture quality; and (3) the time and location probabili­

ties F(L,T) of receiving at least that level of picture quality. Two

methods of approaching this problem of specifying level of service

were considered by TASO. These are (1) the location probability method;

and (2) the acceptance ratio method. The location probability method

has been used by FCC in its allocation and channel assignment operations.

This method, also recommended by the study group XI of the CCIR Xllth

plenary assembly [73], may be modified as follows for space broadcasting.

The protection ratio is usually defined as the minimum permissible

power ratio of the wanted-to-interfering signals available at the re­

ceiver input to provide the desired quality grade of service. The

interfering signal in case of satellite broadcasting is only random

noise, since co-channel and adjacent channel interferences are assumed

non-existing. Hence it is simpler to define the protection ratio in

71
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terms of the ratio of the carrier power in watts to system noise

temperature in degree Kelvin. Then the television service to a re-

latively small area may be described by the following algebraic-

statistical equation.

R(Q) Fd(SO,SO) - Fu(SO,SO) - H(T) - H(L) (57)

where H(T) (58)

H(L) = k(L) ( a 2
td + a 2t u

(59)

R(Q) = Protection ratio of wanted~to-interferingsignal, in dBW/oK t

at the receiver input required to provide a service quality Q

under non-varying conditions. Subscripts d and u refer to the

wanted and unwanted signals, respectively.

Fd (50 t 50) = Median value of carrier power in time and location, in

dBW.

Fu (50,50) = Median value of system noise temperature in time and loca-

k(x) = Standard normal variate.

k(50) = 0, k(70) = -0.S2S t k(90)

at Standard deviation with time

-1.282 (60)

at = Standard deviation from location to location.
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For the purpose of describing service, the above equation may be

interpreted as follows: If service of quality grade Q is defined to

be available at a given location only when the protection ratio at the

receiver input exceeds the required value R(Q) - i.e., the non-varying

protection ratio is exceeded for T% of the time, then in this area, at

least L% of the locations will have this quality of service Q. The

following assumptions are made in the Equation (57).

(1) The receiving antenna gain is same for both wanted and un­

wanted signals and the variability in gain throughout

the area is negligible.

(2) The two signals have approximately Gaussian distributions

both in time and with location.

(3) Both the time correlation and location correlation between

the desired and interfering signals are negligible.

It may be seen from the above, that there are three interdependent

parameters needed to describe the service to the area - i.e., Q, L, T.

It has been standardized that a particular service area has asatis­

factory picture quality Q, when T has a value of 90% and L has a value

of 70%. Based on these, boundaries of iso-service contours may be

drawn to depict the coverage of the broadcasting station. In order to

make the method applicable on a world wide basis to any system design

for temperate regions, the following procedure is adopted.

Contours of equal elevation angle on the surface of the earth for

a given position of satellite are drawn on the Figure 26. This may
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be used by positioning it in the east-west direction according to the

longitudinal location of the synchronous satellite (satellite position

is denoted by the + in the center of the figure). The north-south

position is aligned with the equator. Use of this figure for a

particular example is illustrated in Figure 27. The satellite trans­

mitter output power is assumed to be 1 watt and the transmitting and

receiving antenna gains are at isotropic level. Then the median value

of the desired signal at the input of a receiver situated at a given

elevation angle on the surface of the earth is given by the sum of the

free space loss and the median value of the total attenuation. The

free space loss is given by

(61)

where f = Frequency in GHZ

R = Slant range of ray path in km.

(62)

r o = Radius of earth (6378 km)

Rv Vertical height of satellite (35,200 km)

e = Elevation angle, in degrees.

The median value of the undesired signal is the median value of system

noise temperature. From these values and the standard deviations
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determined earlier, the F(70,90) values of dBW/oK are determined for

12 GHz and are as shown in Figure 26. The corresponding values at

2.5 GHz are, of course, non-time varying and are also shown in Figure 26.

(The system noise temperature assumed for 2.5 GHz is 800 oK, whereas

for 12 GHZ the receiver noise figure is assumed to be 7 dB). The use

of Figure 26 for a particular system design is explained in the next

chapter.

Now with regard to the numbers to be specified for grades of

picture quality, TAsa numbers seem to be the most appropriate ones

since these are the results of most extensive investigations made so

far. The TASa numbers are carrier-to-noise ratios at the RF input of

AM/VSB 525-line television receiver, and hence are to be modified

for FM case. Unfortunately, adequate data on the correlation

between subjectively experienced picture quality and signa1-to-noise

ratio are not available for FM transmission. Therefore, the best

approach is to convert the carrier-to-noise ratios in the TASO's tests

to weighted-picture-SNR's. Further, it may be assumed that FM trans­

mission with a given weighted-picture-SNR would rate the same sub­

jective grade in a viewer panel test as AM transmission with the same

weighted-picture-SNR. These picture-SNR's are then to be converted

back into carrier-to-noise ratios for the particular FM standard used

for satellite broadcasting. Based on a minimum power design procedure,

TRW systems [1] have made these conversions, and the same are given

for 625 line, color FM transmission with 5.5 MHZ video bandwidth in
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Table 7. The (CiT) values are shown only for [-ine and passable quality,

since these are the most relevant for satellite broadcasting.
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VIII. SYSTEM DESIGN

An example of a Satellite Broadcasting System is assumed to

illustrate the procedure of obtaining boundaries of picture quality

contours. The area of coverage assumed is the central United States.

The satellite is positioned at 100 0 west longitude and the satellite

antenna beam axis is pointed to 1000 west longitude and 40° latitude

position as shown in Figure 27. The satellite antenna chosen is a

parabolic circular aperture, with a tapered illumination (n = 1),

and with an aperture diameter of 27 wavelengths. The antenna gain

versus angle off beam center for such an antenna is computed and shown

in Figure 28. (The pattern for uniform illumination is also shown in

this figure for comparison). Contours of equal antenna gain on the

earth surface are now estimated and are as shown in Figures 29 and 30.

The ground receiving antenna is assumed to be a parabola of 1 meter

aperture diameter. This results in a gain of 25.76 dB for 2.5 GHz and

39.40 dB for 12 GHz.

Now the down~link power budget for a particular location on the

surface of the earth may be expressed by the following:

where

(CIT) = TP + (SNT + TPL) + SAG + RAG + (ULN + PL + CL)

80

(63)
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(C/T) = carrier-to-noise temperature ratio, in dBW/oK.

TP = Transmitter output power, in dBW.

SNT = System noise temperature, in dB/oK.

TPL = Total propagation losses, in dB.

SAG = Satellite antenna gain, in dB.

RAG Ground receiver antenna gain, in dB.

ULN = Uplink-noise, in dB. (assumed 0.3 dB).

PL = Polarization losses, in dB. (assumed 0.5 dB).

CL = Circuit losses, in dB. (assumed 1.5 dB).

The values of (SNT + TPL) are the F(70,90) values indicated in

Figure 26. The required picture quality boundaries are now determined

as follows:

Figure 29 shows the design procedure at 12 GHz. The three contours

of equal elevation angles (32.7°, 43.7°, and 55°)·, which are extrapolated

to a larger scale from Figure 27 for the assumed satellite position

are shown. The corresponding F(70,90) values are indicated on these.

Now for a fine picture quality, the required (C/T) is -139.0 dBW/oK,

and to obtain this at -3 dB antenna beam edge and 43.7° elevation

angle, the satellite transmitter output power required may be computed

from Equation (63) to be 27.78 dBW (600 watts/video channel).

Assuming this, we may now rearrange Equation (63) for a fine picture

quality as,
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SAG + (SNT + TPL) = (-139.0 - 27.78 - 39.4 + 2.3)

SAG + (SNT + TPL) = -203.88 dBW/oK.

Now the positions on the map that result in a sum of antenna gain

and F(70,90) values to be -203.88 dBW/oK are located and are joined

by a closed contour. This represents the boundary of fine picture

quality. Similarly the contour for passable picture quality is derived

and shown in the same figure.

Figure 30 gives the same results for 2.5 GHZ, with a transmitter

output power of 25.323 dBW (340 watts/video channel). It may be noted

that effects of man-made noise in the metropolitan areas and of any

special terrain or other features within the coverage area have been

neglected. However, in an actual system, these effects may be con­

sidered in addition to the above discussed factors and the deterioration

in the picture quality may be determined.
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IX. CONCLUSION

The inevitable rise of so-called domestic communication satellites

has already begun with the "mo1niya" system successfully operating

in the U.S.S.R., and another system "Anik" to be implemented in

Canada. Also the sudden action by the U.S. Federal Communications

Commission to review the long dormant U.S. domestic proposals herald

a totally new concept of communications. Both in United States and in

India, special experiments are scheduled that will use a communication

satellite to disseminate educational and health information [74]. The

advantages of using communication satellites are undeniable, but care­

ful planning is needed. In the present work, direct satellite tele­

vision broadcast system is considered, assuming that such a system is

feasible in the near future. High power spaceborne TV transmitter

design and the development of a low cost, low noise ground receiver

for domestic reception are the two most important problems that need

to be solved for the implementation of a TVBS System. It is expected

that if the technology development is continued at the present rate,

the TVBS may become a reality in the 1975-85 period.

However, the most important contribution of this study has been

the statistical analysis of propagation characteristics at 12 GHz.

These results are extremely useful in the design of any communication

satellite system in the temperate regions of the world.

86
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Lastly, it may be mentioned that the satellite transmitter power

requirements may be very much reduced, if the principle of phase­

locked-loop is accepted for the ground receiver. However, much more

work needs to be done in this field, before the economic and other aspects

may be discussed.
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APPENDIX A

COMPUTER PROGRAM
FOR STATISTICAL ANALYSIS OF

ATMOSPHERIC EFFECTS ON SATELLITE
TRANSMISSION AT 12 GHz
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C STATISTICAL ANALYSIS OF ATMOSPHERIC hTTENUATION
OIMENSIONfHtTOlB),AlBANl36S,6),AGI36S,8),AW(365,B),

*AT(365,8),TSl365,B),BCI365,8),TE(36S,8),~EANATl8),

*AP (365,B) ,ArSO(B) ,TEMEAN(B), rE50(8)
RtAl MEANAT,KW

C RtAO tLEVATION ANGLE
RlAO(S,99) (THETo(l),l=I,8)

99 FORMArIBfl0.l)
C RtAo CLIMATOLOGICAL DATA

DO 1 1=1,365
READ(5,l) (ALBAN(I,J),J=l,6)

1 FlJRMAT(6F5.0)
WRITEl6,2000) I

2000 FURMAH' ',15'
3 CONTINUf.:

DO 101 L=I,8
THtTA=THETO(L)*3.141593/180.
DU 2 1=1,365

C COMPUTE ATTENUATION OUt TO OXYGEN AND WATER VAPOR
RHO=ALBAN(I,l)
RU=6378.
RV=10.
R=SQRT(IRO**2)*(ISINCTHETA»**2)+RV*12.*RO+RV»

*-RO*SIN(rHETA)
AG(I,L)=18.5E-l+5.28E-4*RHO)*R

C COMPUTE CLOUD ATTfNUATION
T=AL8ANII,3)
ROEW=ALBANI 1,4)
RW=ALBAN(!,S)
f=12.
AO=-6.866
B=1.95
M=4.SE-3
KW=(F**B)*EXP(AO*(l.+~*T»

AW (I, L )=KW*ROEW*RW/S IN( THE TA)
C CALCULATE ATTENUATION DUE TO RAIN

AKP=2.9E-2
AL PHA =1.285
PO=AlBANlI,2)*25.4
E=SO.
C=3./SIN(THt:TA)
S=AMINllC,E'
APlI,l)=AKP*(PO**ALPHA)*S
ATII,l)=AG(I,l)+AWlI,l)+APII,L)

C CALCULATE SKY NOISE TEMPERATU~E

TM=236.2+0.622*ALBAN(I,6)
AL PHA T= 10. ** (A T( I ,l ) / 10. )
TS(I,l)=TM*(1.-1./AlPHAT)
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2 CJNTINUI::
CI\Ll SORTlAG,l)
CALL SORTlAW,l)
CAll SURTIAP,l)
CALL SORHAT,L)
CALL SORTnS,U
WRITEC6,54)

~4 FORMATC~l','WAS~INGTO~,OC')

W~ITEC6,56) THcTOCl)
56 FURMATC' ',5X,'ElEVATION ANGll=',FIO.l)

WKITEl6,lU
11 FORMAT I' ',II,llX,'AG',20X,'AW',20X,'AP',20X,'AT',

*20X,'TS',II)
WRITEC6,12) CAGCI,L),AWCI,l),APCI,l),ATlI,l),TSCI,L),

*1=1,365)
12 FORMATC' ',5C5X,E15.7»

C COMPUTE STANDARD DEVIATION OF TOTAL ATTENUATION
MfANA T( U =0.0
DO 15 1=1,365

15 MEANATCl)=MEANATCl)+Cl./365.)*ATCI,L)
DIFF=O.O
00 16 1=1,365

16 DIFF=DIFF+(CAT(I,L)-MEANATCL»**2)
ATSDCl)=SQRTCDIFF/365.)

C COMPUTE STANDARD DEVIATION Of SYSTEM NOISE TEMP
TEMEANCl)=O.O
OU 17 1=1,365
TECI,L)=TSCI,l)+1175.
TECI,L)=10.*ALOG10CTECI,L»

17 TEMEANCl)=TEMEAN(l)+C 1./365.)*TECI,l)
DIFf=O.
DO 18 1=1,365

18 DlfF=DIFF+CCTECI,l)-TEMEANCl»**2)
TtSDCl)=SQRT(Cl./365.)*OIFF)
WRITEC6,59) MEANATCl),ATSOCl),TEMEANCl),TESOll)

59 FORMATC' ',II,3X,'MEAN OF AT=',E15.7,3X,'SD OF AT=',
*E15.7,3X,'MEANOFTE=',E15.7,3X,'SO OF TE=',E15.7)

101 CONTINUE
STOP
END
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5JBROUTl~E FOR CUMULATIVE DISTRIBUTIONS

SU6ROUTI~E SORT(BC,L)
OIMENSIO~ BC(3b5,8)
OJ 2 J=l,3b4
JP1:J+l
K:J
DJ1 I=JP1,3b5

1 Ir(BC(K,L).LT.BC(I,L» K=I
CB=BC(K,L)
B:(K,L)=BC(J,L)
BC(J,L)=CB

2 CONTINUl::
RETJRN
E\lD


